Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics
نویسنده
چکیده
The highly nonlinear laser–matter interaction conditions produced by high-intensity amplified ultra-fast laser pulses have proven to be beneficial in the processing of normally transparent wide-band-gap dielectric materials. This article presents experimental studies of the ultra-fast laser absorption process in three wide-band-gap dielectrics: fused silica, calcium fluoride, and sapphire. Time-resolved measurements of the probe transmissivity and reflectivity show both the formation of dense free-electron plasma at the surface due to nonlinear absorption of the laser pulses and rapid structural damage on the order of a few picoseconds. Pump–probe data with intense pump and probe pulses was also correlated to atomic force microscopy measurements of the ablated volume. It was observed that the material removal peaked near zero delay between the pulses and decreased within a temporal separation of about 1 ps. PACS 52.38.Mf; 78.47.+p; 79.20.Ds
منابع مشابه
A Planar, Layered Ultra-wideband Metamaterial Absorber for Microwave Frequencies
In this paper, an ultra-wideband metamaterial absorber is designed and simulated. The proposed absorber is planar and low profile. It is made of a copper sheet coated with two dielectric layers. Each unit cell of the metamaterial structure is composed of multiple metallic split rings, which are patterned on the top and middle boundaries of the dielectrics. The designed absorber utilizes differe...
متن کاملStudy of laser ablation using nano-second laser pulses
In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...
متن کاملLaser Ablation and Deposition of Wide Band Gap Semiconductors: Plasma and Nanostructure of Deposits Diagnosis
Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by enviro...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملModeling Free-carrier Absorption and Avalanching by Ultrashort Laser Pulses
In the past decade it was demonstrated experimentally that negatively-chirped laser pulses can lower the surface LIDT for wide band-gap materials by decreasing the number of photons required for photoionization on the leading edge of the pulse. Similarly, simulations have shown that positively-chirped pulses resulting from selffocusing and self-phase modulation in bulk dielectrics can alter the...
متن کامل